STUDY ON BACKFIRE, PERFORMANCE AND EMISSIONS CHARACTERISTICS OF A HYDROGEN FUELLED SPARK IGNITION ENGINE

BHERU LAL SALVI

CENTRE FOR ENERGY STUDIES INDIAN INSTITUTE OF TECHNOLOGY DELHI AUGUST 2016

©Indian Institute of Technology Delhi (IITD), New Delhi, 2016

STUDY ON BACKFIRE, PERFORMANCE AND

EMISSIONS CHARACTERISTICS OF A

HYDROGEN FUELLED SPARK IGNITION ENGINE

by

BHERU LAL SALVI

Centre for Energy Studies

Submitted

in fulfilment of the requirements of the degree of Doctor of Philosophy

to the

INDIAN INSTITUTE OF TECHNOLOGY DELHI

AUGUST 2016

CERTIFICATE

The thesis entitled "Study on Backfire, Performance and Emissions Characteristics of a Hydrogen Fuelled Spark Ignition Engine" being submitted by Mr. Bheru Lal Salvi to the Indian Institute of Technology Delhi for the award of Doctor of Philosophy is a record of bonafied research work carried out by him. He has worked under my guidance and supervision, and has fulfilled the requirements for the submission of this thesis, which has attained the standard required for a Ph.D. degree of the institute. The results presented in the thesis have not been submitted, in part or full, elsewhere for the award of any degree or diploma.

I certify that he has pursued the prescribed course of research under my supervision.

Place: New Delhi

Date:

(Dr. K. A. Subramanian)
Associate Professor
Centre for Energy Studies
Indian Institute of Technology Delhi
New Delhi – 110 016

ACKNOWLEDGEMENTS

Accomplishment of an astonishing task requires the support and contribution of number of individuals. These few paragraphs are an effort to epitomize my gratitude towards all those, who have helped me directly or indirectly to complete my research work successfully.

First and foremost, I would like to express my immense gratitude to my research supervisor, **Dr. K. A. Subramanian**, Centre for Energy Studies, IIT Delhi for his continuous panegyric efforts, ever encouraging attitude, throughout critical and valuable suggestions, guidance and constant inspiration with a keen interest in the progress of present research and bringing this work to completion. He inculcated the characteristics that are essential to an integrated scholar - enthusiastic about unknowns, meticulous to details, hardworking and eager to learn the new dimensions in research. I am also very grateful to him for his mentorship and the opportunity that he offered me to work in a world-class research laboratory. I am forever heartedly indebted to him.

I am extremely thankful to **Prof. Viresh Dutta** (Head, CES), **Prof. R. P. Sharma** (Ex-Head, CES), **Prof. T. S. Bhatti** (Ex-Chairman, CRC), **Dr. R. Uma** (Co-ordinator Ph.D., CES), **Prof. L. M. Das** (Member, SRC) and **Prof. P. M. V. Subbarao** (Member, SRC) for their valuable suggestions and encouragement for value addition in this research work and the thesis.

There are also some friends and colleagues, who have helped me along the way for the successful completion of this work. I wold like to thank **Mr. Ramesh Jeeragal** and **Mr. Ashok Kumar** for their cooperation and support as and when required during my research work. I acknowledge my colleagues **Mr. Venketshwarlu Chintala** and **Mr. R. Balasubramanian** for their cooperation and support in the laboratory. I also, would like to acknowledge **Mr. Vinay C. Mathad** and **Mr. Gurpreet Singh** for their help during experimentation. The special thanks to **Shri P. K. Batra** (Lab in-charge, Engines and Unconventional Fuels Laboratory, CES) along with his staff for providing necessary facility and support during the entire course of experimental work. I acknowledge **Shri Shankar Lal Sharma** (JTS, IT Lab, CES) for providing Computer Lab facility for computational work. At the same time, I feel extremely lucky to stay in the Udaigiri Hostel, IIT Delhi, where I enjoyed the homely environment and good food.

I acknowledge the Registrar, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan for deputing me to pursue my Ph.D. degree under quality improvement program (QIP), funded by AICTE, New Delhi. I also acknowledge the Coordinator, QIP, IIT Delhi and the staff members of QIP office for their support to pursue my Ph.D. at CES, IIT Delhi.

Finally, I want to express my deep gratitude to my parents and my family for their sacrifice and unreserved support. I come to **Mrs. Mehtabi Salvi**, my wife and the best friend, to whom I owe everything. Without her support, it would be very difficult to concentrate on my research work at CES, IIT Delhi campus and writing this thesis. It was through her love and support that I had the peace of mind even at the times of difficulties. Words cannot express how much she means to me, and how thankful I am for the time we have already had.

At last but not least, I am indebted to the God and all my well-wishers, who do not figure in this acknowledgement, however have helped me in tenure of my research work.

Place: New Delhi

Date:

(Bheru Lal Salvi)

ABSTRACT

This research work was aimed for study of backfire, performance improvement and emissions reduction in a hydrogen fuelled spark ignition engine. For this study, a carburettor based gasoline fuelled spark ignition (SI) engine generator set with rated power output of 2.1 kVA at 50 Hz and 220 V was selected and then converted into hydrogen fuelled generator set using timed manifold injection. The experimental study was carried out at various compression ratios (4.5:1, 6.5:1(base) and 7.2:1), spark timings, delay in start of hydrogen gas injection and exhaust gas recirculation (EGR) up to 25 % by volume. The study at reduced compression ratio of 4.5:1 was also carried out for wide parametric study of backfire occurrence in a hydrogen fuelled SI engine.

Experimental results revealed that hydrogen fuelled SI engine operation at increased compression ratio of 7.2:1 improved the relative brake thermal efficiency (BTE) by 10 % as compared to base compression ratio of 6.5:1 at power output of 1 kW. The highest BTE of 15.3 % was observed at equivalence ratio of 0.5 and it decreased with respect to increase in equivalence ratio, while power output increased. The engine operation at higher equivalence ratio of 0.8 and above was observed with combustion knock and reduced BTE. However, the NO_x emission increased at increased compression ratio of 7.2:1 and also it increased with respect to increase in equivalence ratio.

The spark time variation and EGR were used for NO_x emission reduction at source level. The spark advancing from maximum brake torque (MBT) caused to increase in NO_x emission, while spark retarding up to 2° CA bTDC reduced the NO_x emission marginally, but power output and the thermal efficiency dropped significantly by 6 %. The EGR level up to 24 % by volume significantly reduced the NO_x emission up to 57 %. The spark time retarding is not a suitable option for NO_x emission reduction in hydrogen fuelled SI engines, whereas the EGR level of 20 % by volume was chosen as optimum where the NO_x emission was reduced by 50 % with marginal effect on power drop as compared to NO_x emission without EGR.

The results of numerical analysis and experimental study on backfire occurrence indicate that backfire is mainly function of residual gas temperature and hot-spots. It was found from the numerical analysis of in-cylinder mixture temperature during suction stroke that delayed gas injection would reduce the probability of backfire occurrence due to cooling of residual gas and hot-spots. In addition to this the backfire occurrence phenomenon was explained using computational fluid dynamics (CFD) and found that backfire occurs due to hot-spot and flame propagate towards upstream of intake manifold. The probability of backfire occurrence reduced with respect to increase in intake charge velocity. The experimental observations for delay in start of injection (SOI) have shown that backfire limiting start of injection (BFL-SOI) reduced with increased compression ratio and the delay in SOI up to 50° CA aTDC eliminated the backfire occurrence and improved the engine performance also. It was found from the experimental results of flame kernel growth rate (FKGR) that higher FKGR for hydrogen with respect to equivalence ratio is responsible for reduced ignition lag and rapid flame propagation, while use of EGR with intake charge reduced the FKGR by charge dilution.

The notable findings emerged from this study are that the hydrogen fuelled SI engine with increased compression ratio of 7.2:1, MBT spark timing of 9° CA bTDC and EGR value of 20 % by volume will give better performance and reduced NO_x emission. The addition of EGR slows down the FKGR and delay in SOI allows to cool down the residual gas; therefore probability of backfire occurrence reduces with EGR and delay in SOI. On the whole, the hydrogen fuelled spark ignition engine with EGR could provide beneficial results of reduced NO_x emission and elimination of backfire.

TABLE OF CONTENTS

•	4
CERT	TIFICATEi
ACK	NOWLEDGEMENTSiii
ABST	RACTv
TABI	E OF CONTENTS vii
LIST	OF FIGURESxi
LIST	OF TABLES xvii
NOM	ENCLATURESxix
Chap	ter – 11
INTR	ODUCTION1
1.1	Background of the study1
1.2	Motivation of the work2
1.3	Problem statement and solution outline
1.4	Organizational frame work of research4
Chap	ter – 27
LITE	RATURE SURVEY7
2.1	Use of hydrogen as fuel for SI engines7
2.2	Backfire in hydrogen fuelled SI engines9
	2.2.1 Chemical kinetics of hydrogen-oxygen reaction10
	2.2.2 Backfire control methods in hydrogen fuelled SI engines
	2.2.3 Flame kernel growth rate in SI engines11
	2.2.4 Closure
2.3	Performance and emissions characteristics of hydrogen fuelled SI engines13
	2.3.1 Hydrogen fuelled SI engines operating at various compression ratios

	2.3.2 Genesis of NO formation	.14
	2.3.3 Emission reduction in hydrogen fuelled SI engines	.15
	2.3.4 Closure	.18
2.4	Energy and exergy study of hydrogen fuelled SI engines	.18
2.5	Summary of literature survey	.19
2.6	Research gaps	.22
Chapt	ter – 3	.23
OBJE	CTIVES AND METHODOLOGY	.23
3.1	Objectives	.23
3.2	Phases in research work	.24
3.3	Methodology	.25
	3.3.1 Change of compression ratio	.25
	3.3.2 Strategies for NO _x emission reduction in a hydrogen fuelled SI engine	.25
	3.3.3 Analysis of backfire and its control in hydrogen fuelled SI engine	.26
	3.3.4 Calculation of flame kernel growth rate	.33
Chapt	ter – 4	.35
DEVE	ELOPMENT OF EXPERIMENTAL SETUP AND TEST PROCEDURE	.35
4.1	Experimental setup	.35
4.2	Development of engine management system	.40
4.3	Modification of spark timing	.45
4.4	Variation in engine's compression ratio	.45
4.5	Instrumentation and data acquisition system	.47
4.6	Exhaust gas recirculation and its flow rate calculation	.48
4.7	Calculation of uncertainty	.51
4.8	Calculation of combustion and performance parameters	.52

4	.9	Safety and handling of hydrogen	.55
4	.10	General test matrix and experimental test procedure	.56
4	.11	CFD simulation for study of backfire analysis	.61
Cha	apt	er – 5	.63
RE	SU	LTS AND DISCUSSION	.63
5	.1	Study of various compression ratios in a hydrogen fuelled SI engine	.63
		5.1.1 Effects of spark timing on combustion characteristics	.63
		5.1.2 Effects of spark timing on performance characteristics	.68
		5.1.3 Optimization of spark gap	.71
		5.1.4 Optimization of start of gas injection	.73
		5.1.5 Effects of compression ratios on combustion characteristics	.78
		5.1.6 Effects of compression ratios on engine performance	.88
		5.1.7 Effects of compression ratios on engine temperatures	.93
		5.1.8 Effects of compression ratios on volumetric efficiency	.95
		5.1.9 Effects of compression ratios on emissions characteristics	.97
		5.1.10 Closure	102
5	.2	Emission reduction strategies in a hydrogen fuelled SI engine	103
		5.2.1 Effects of spark time retarding on performance and NO _x emission	103
		5.2.2 Effects of EGR on combustion, performance and NO _x emission	105
		5.2.3 Closure	113
5	.3	Backfire analysis in a hydrogen fuelled SI engine	114
		5.3.1 Effects of BMEP on in-cylinder mixture temperature in suction stroke	116
		5.3.2 Analysis of charge flow through intake manifold and backfire	119
		5.3.3 Effects of start of gas injection and compression ratios on backfire	121
		5.3.4 Backfire propagation	125

5.3.5 Effects of equivalence ratio and EGR on backfire occurrence	127
5.3.6 Experimental study of flame kernel growth rate in SI engine	128
5.3.7 Effect of inlet charge velocity on backfire occurrence	133
5.3.8 Strategies for backfire control in hydrogen fuelled SI engines	135
5.3.9 Closure	136
5.4 Energy and exergy analysis in a hydrogen fuelled SI engine	137
5.4.1 Closure	138
Chapter – 6	139
CONCLUSIONS AND RECOMMENDATIONS	139
6.1 Conclusions	139
6.1.1 Study on effects of various compression ratios	139
6.1.2. The NO _x emission reduction	141
6.1.3. Backfire analysis	141
6.2 Recommendations and scope for future study	143
REFERENCES	145
APPENDICES	155
Appendix – A: Electronic control unit and graphical user interface	155
Appendix – B: Gas injector and its specifications	157
Appendix – C: Modification and calculation of engine's compression ratio	159
Appendix – D: Measuring instruments and specifications	161
Appendix – E: Flashback arrestor	163
PUBLICATIONS FROM THIS THESIS	165
AUTHOR'S BIOGRAPHY	169

LIST OF FIGURES

+-

Fig. No.	TitlePage No.
Fig. 2.1.	Backfire occurrence in the intake manifold [9]9
Fig. 3.1:	Intake manifold geometry28
Fig. 3.2:	Intake manifold and combustion chamber 3D geometry with meshing30
Fig. 3.3:	Intake manifold, valve geometry and backfire during charge flow
Fig. 3.4:	(a) AVL Visio FEM sensors integrated with spark plug and (b) flame detection
	signals with respect to crank angle
Fig. 4.1:	Schematic diagram of the experimental setup
Fig. 4.2:	Photographic view of developed experimental setup (Plate – 1)
Fig. 4.3:	Photographic view of developed experimental setup (Plate – 2)
Fig. 4.4:	Block diagram of engine management system (EMS)40
Fig. 4.5:	Parts and sensors used in engine management system
Fig. 4.6:	Developed mechanism (a) Teethed wheel and speed sensor, (b) TMAP sensor
	and gas injector, and (c) throttle position sensor mounting
Fig. 4.7:	Hydrogen gas supply line with (a) gas injector and (b) flashback arrestor44
Fig. 4.8:	Modified ignition system (a) spark time simulation test bench, (b) ignition
	system mounted on engine and (c) online monitoring of spark timing
Fig. 4.9:	(a) Schematic diagram of engine, (b) cylinder head with proposed area for metal
-	removal and filling, (c) cylinder head with reduced $CR_1 = 4.5:1$, (d) base
	cylinder head with $CR_2 = 6.5:1$, and (e) cylinder head with increased $CR_3 =$
	7.2:1
Fig. 4.10	: Visio FEM and Visio Flame sensor integrated with engine
Fig. 4.11	: Visio Flame sensor mounted on the engine cylinder head

-0

Fig. 4.12: Determining the start of combustion and duration of combustion
Fig. 4.13: Selection of start of injection and duration of injection
Fig. 4.14: Valve timing diagram with backfire period and safe start of injection58
Fig. 5.1: In-cylinder pressure with respect to crank angle at various spark timings65
Fig. 5.2: In-cylinder pressure with respect to volume at various spark timings
Fig. 5.3: Variation in heat release rate w.r.t. crank angle at various spark timings67
Fig. 5.4: Mass faction burnt with respect to crank angle at various spark timings67
Fig. 5.5: Variation in IMEP w.r.t. spark timing and compression ratio
Fig. 5.6: Variation in COV of IMEP w.r.t. spark timing and compression ratio69
Fig. 5.7: Variation in brake torque and BTE w.r.t. spark timing and compression ratios .70
Fig. 5.8: Variation in IMEP and COV of IMEP with respect to spark gap72
Fig. 5.9: Effects of start of injection on in-cylinder pressure74
Fig. 5.10: Effects of start of injection on rate of pressure rise74
Fig. 5.11: Variation in peak HRR and cumulative heat released w.r.t. delay in SOI75
Fig. 5.12: Effects of start of injection on IMEP and COV of IMEP76
Fig. 5.13: Effects of start of injection on equivalence ratio and volumetric efficiency77
Fig. 5.14: Effects of start of injection on BMEP and brake thermal efficiency78
Fig. 5.15: In-cylinder pressure with respect to crank angle at various compression ratios
and equivalence ratios79
Fig. 5.16: Variation in HRR with respect to crank angle at various compression ratios and
equivalence ratios80
Fig. 5.17: Effects of compression ratios on peak heat release rate at various equivalence
ratios
Fig. 5.18: Mass fraction burnt with respect to crank angle at various compression ratios
and equivalence ratios

Fig. 5.19: Effects of compression ratios on (a) ignition lag and (b) duration of combustion Fig. 5.21: In-cylinder average peak temperature with respect to compression ratio84 Fig. 5.22: In-cylinder pressure during normal cycle and knock cycle at compression ratios Fig. 5.24: Knock peaks with respect to number of engine cycles at compression ratios of Fig. 5.25: High knock peaks with respect to number of cycles at compression ratio of Fig. 5.27: Variation in COV of IMEP with respect to equivalence ratio at various Fig. 5.28: Effects of compression ratios on indicated thermal efficiency90 Fig. 5.29: Brake specific energy consumption with respect to compression ratio90 Fig. 5.33: Effects of compression ratios on temperature of lubrication oil and cylinder fins Fig. 5.34: Clearance volume and residual gas fraction w.r.t. compression ratio96 Fig. 5.35: Variation in volumetric efficiency w.r.t. compression ratio in a gasoline and hydrogen fuelled SI engine96

Fig. 5.36: Effects of compression ratio on specific HC emission in gasoline and hydrogen
fuelled SI engine98
Fig. 5.37: Effects of compression ratios on specific CO ₂ emission
Fig. 5.38: Specific NO_x emission with respect to compression ratio in a hydrogen and
gasoline fuelled SI engine100
Fig. 5.39: Residual gas fraction and specific NO _x emission w.r.t. compression ratios100
Fig. 5.40: Specific NO_x emission with respect to equivalence ratio at various compression
ratios for hydrogen and gasoline fuelled SI engine101
Fig. 5.41: Effects of spark timing on ignition lag and duration of combustion104
Fig. 5.42: Effects of spark timing on BMEP, BTE and NO _x emission104
Fig. 5.43: Relative change in BMEP, BTE and NO _x emission w.r.t. spark timing105
Fig. 5.44: In-cylinder pressure with respect to crank angle at various EGR106
Fig. 5.45: Cyclic variation of in-cylinder pressure at EGR of 23.5 % by volume106
Fig. 5.46: Effects of EGR on peak heat release rate and ignition lag107
Fig. 5.47: Effects of EGR on IMEP and COV of IMEP at compression ratio of 7.2:1109
Fig. 5.48: Effects of EGR on BMEP, BTE and specific NO _x emission109
Fig. 5.49: Relative change in BMEP, BTE and NO _x emission with respect to EGR110
Fig. 5.50: Effects of EGR on nitrogen and oxygen contents in in-cylinder charge and
reduction in specific NO _x emission110
Fig. 5.51: Relative change in nitrogen and oxygen contents in in-cylinder charge with
respect to EGR and reduction in NO _x emission111
Fig. 5.52: Comparative NO_x emission with respect to spark time retarding and exhaust
gas recirculation
Fig. 5.53: Intake manifold and in-cylinder pressure, and intake and exhaust valve lift with
respect to crank angle during gas-exchange process115

Fig. 5.54: Instantaneous in-cylinder mass and valve lift profile with respect to crank angle
during gas-exchange process115
Fig. 5.55: Variation in in-cylinder mixture temperature with respect to crank angle during
suction stroke117
Fig. 5.56: CFD analysis of hydrogen-air mixture flow through intake manifold and in-
cylinder hot-spot119
Fig. 5.57: CFD analysis of backfire occurrence and its propagation in the intake manifold
Fig. 5.58: Effects of start of injection on IMEP and COV of IMEP122
Fig. 5.59: Effects of start of injection on volumetric efficiency and equivalence ratio122
Fig. 5.60: Effects of compression ratios on residual gas fraction and energy content in
residual gas124
Fig. 5.61: Effects of compression ratio on backfire limiting start of injection
Fig. 5.62: Laminar burning velocity of gasoline, methane and hydrogen with respect to
equivalence ratio126
Fig. 5.63: Variation in laminar burning velocity with respect to EGR and ER127
Fig. 5.64: Variation in FKGR with respect to BMEP in a gasoline fuelled SI engine128
Fig. 5.65: Flame kernel growth rate with respect to equivalence ratio
Fig. 5.66: Flame kernel growth rate w.r.t. EGR in a hydrogen fuelled SI engine
Fig. 5.67: FKGR vs flame travelled when piston reached to TDC at the end of
compression stroke131
Fig. 5.68: Validation of correlation for FKGR with experimental results
Fig. 5.69: Variation in FKGR with respect to equivalence ratio and EGR133
Fig. 5.70: Velocity of flame and reactants with respect to crank angle at intake valve 134
Fig. 5.71: Intake charge velocity and backfire occurrence in the intake manifold

Fig. 5.72: Fuel energy	distribution in hydrogen	fuelled SI engine.	
Fig. 5.73: Fuel exergy	distribution in hydrogen	fuelled SI engine.	

LIST OF TABLES

٠

Table No.	. Title	Page No.
Table – 2.	1: Properties of hydrogen, methane and gasoline [1,2,6]	8
Table – 2.	.2: Summary of literature survey on backfire and its control in hyd	rogen fuelled
	SI engines	20
Table – 2	.3: Summary of literature survey on performance and emissions c	haracteristics
	of hydrogen fuelled SI engines	21
Table – 4.	.1: Specifications of engine and alternator	36
Table – 4.	.2: Valve timings and spark timing of the engine	
Table – 4.	.3: Summary of uncertainty of measurement for various parameters	51
Table – 4.	.4: General test matrix for experimental work	57
Table – 5	.1: Summary of engine performance w.r.t. spark timing and comp	ression ratios
		71
Table – 5	5.2: Summary of effects of compression ratios on performance a	and emission
	characteristics	
Table – 5.	.3: Summary of effects of EGR on BMEP, BTE and NO_x emission.	113
Table – 5.	.4: In-cylinder mixture temperature w.r.t. crank angle during suction	n118
Table – 5	5.5: Summary of effects of start of gas injection on IMEP, COV	of IMEP and
	volumetric efficiency at compression ratio of 7.2:1	
Table – 5.	.6: Summary of factors affecting the backfire and its control strategi	ies136

÷

NOMENCLATURES

+-

Abbreviations		HC	=	Hydrocarbon	
aBDC	=	After bottom dead centre	HRR	=	Heat release rate
AC	=	Alternative current	ICE	=	Internal combustion
aTDC	=	After top dead centre			engine
bBDC	=	Before bottom dead centre	IMEP	=	Indicated mean effective
BDC	=	Bottom dead centre			pressure
BMEP	=	Brake mean effective	IPC	=	Inlet port cooling
		pressure	IR	=	Infra-red
BP	=	Brake power	ITE	=	Indicated thermal
BSEC	=	Brake specific energy			efficiency
		consumption	LHV	=	Lower heating value
BSFC	=	Brake specific fuel	MBT	=	Maximum brake torque
		consumption	MFI	=	Manifold fuel injection
bTDC	=	Before top dead centre	NO _x	=	Nitrogen oxides
BTE	=	Brake thermal efficiency	NRV	=	Non-return valve
CA	=	Crank angle	NTP	=	Normal temperature and
CFD	=	Computational fluid			pressure (25° C and 1.013
		dynamics			bar)
CHR	=	Cumulative heat released	PCV	=	Positive crankcase
CNG	=	Compressed natural gas			ventilation
CR	=	Compression ratio	PFI	=	Port fuel injection
СТ	=	Coolant temperature	rpm	=	Revolution per minute
DOC	=	Duration of combustion	SC	=	Supercharging
ECU	=	Electronic control unit	SIE	=	Spark ignition engine
EGR	=	Exhaust gas recirculation	SOC	=	Start of combustion
EMS	=	Engine management	SOI	=	Start of injection
		system	ST	=	Spark timing
EOC	=	End of combustion	STA	=	Spark time advance
ER	=	Equivalence ratio	STMIS	=	Sequential timed manifold
FKGR	=	Flame kernel growth rate			injection system

-+

TDC	=	Top dead centre	S	=	Entropy (J/kgK
TMI	=	Timed manifold injection	Т	=	Temperature (K)
TPS	=	Throttle position sensor	$\dot{R}_{_{FKG}}$	=	Flame kernel growth rate
VC	=	Valve close			(m/s)
Vol.Eff.	=	Volumetric efficiency	r_c	=	Compression ratio
VOP	=	Valve overlap period			
w.r.t	=	With respect to	Greek sy	mb	ols
WI	=	Water injection	φ	=	Fuel-air equivalence ratio
WOT	=	Wide open throttle	γ	=	Ratio of specific heats
			ρ	=	Density (kg/m ³)
Symbols			η_{ith}	=	Indicated thermal
Symbols h	=	Enthalpy (J/kg)	η_{ith}	=	Indicated thermal efficiency

χ

= Residual gas fraction

= Engine speed (rpm)

= Pressure (N/m^2)

Ν

р

•	,	•	
,	C	2	ĸ
,	٠	,	